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Abstract
18F-fluorodeoxyglucose positron emission tomography (FDG-PET) enables in-vivo cap-

ture of the topographic metabolism patterns in the brain. These images have shown

great promise in revealing the altered metabolism patterns in Alzheimer's disease (AD).

The AD pathology is progressive, and leads to structural and functional alterations that

lie on a continuum. There is a need to quantify the altered metabolism patterns that

exist on a continuum into a simple measure. This work proposes a 3D convolutional

neural network with residual connections that generates a probability score useful for

interpreting the FDG-PET images along the continuum of AD. This network is trained

and tested on images of stable normal control and stable Dementia of the Alzheimer's

type (sDAT) subjects, achieving an AUC of 0.976 via repeated fivefold cross-validation.

An independent test set consisting of images in between the two extreme ends of the

DAT spectrum is used to further test the generalization performance of the network.

Classification performance of 0.811 AUC is achieved in the task of predicting conver-

sion of mild cognitive impairment to DAT for conversion time of 0–3 years. The saliency

and class activation maps, which highlight the regions of the brain that are most impor-

tant to the classification task, implicate many known regions affected by DAT including

the posterior cingulate cortex, precuneus, and hippocampus.
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1 | INTRODUCTION

Dementia of the Alzheimer's type (DAT) used to be regarded as a

disease with discrete clinical stages. In 2011, the National Institute

on Aging–Alzheimer Association (NIA–AA) created diagnostic

recommendations for three distinct stages: preclinical DAT, mild

cognitive impairment (MCI), and DAT (McKhann et al., 2011).

Preclinical DAT was defined for individuals without overt cognitive

symptoms, andMCIwas defined for individualswith noticeable cognitive

decline. In recent years, longitudinal studies have shown that the cogni-

tive decline in DAT is a continuous process that takes place over a long

period of time, and that the pathological changes of DAT are also part of

a continuous process that begins decades before the appearance of cog-

nitive symptoms (Fagan et al., 2014; Monsell et al., 2014; Resnick et al.,

2010; Sutphen et al., 2015; Villemagne et al., 2011). These discoveries
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have prompted a shift to conceptualize DAT as a continuum rather than

three distinct stages (Dubois et al., 2016; Jack et al., 2018). Applying the

continuum concept of DAT to automated image-based interpretation is

challenging. It requiresmethods to not only discriminate between images

from the extreme ends of the DAT spectrum, but also generalize to

images along the entire spectrum.
18F-fluorodeoxyglucose positron emission tomography (FDG-PET)

plays a major role in the diagnosis of DAT through its capacity to

detect early abnormalities in brain metabolism (Reiman et al., 2004).

Most of the earlier FDGPET classification studies were trained and

evaluated on images from the extreme ends of the DAT spectrum:

normal control (NC) and DAT. One recent work has demonstrated the

ability of FDG-PET classification to generalize its predictive perfor-

mance to images along the entire DAT spectrum (Popuri et al., 2018).

The most common approach used to extract DAT-related patterns

from FDG-PET images is region-of-interest (ROI) approach (Gray

et al., 2011; Lu et al., 2018; Pagani et al., 2015; Pagani et al., 2017;

Popuri et al., 2018; Toussaint et al., 2012). In a ROI-based approach, a

subject's FDG-PET image is registered to a corresponding structural

MRI image or a custom FDG-PET template, then the mean intensity in

each predefined ROI is extracted and fed into classifiers such as sup-

port vector machines. However, the complex spatiotemporal pattern

of DAT-related abnormalities is not likely to be fully captured by mea-

suring the intensities of a limited number of ROIs defined based on a

priori assumptions (Fan, Resnick, Wu, & Davatzikos, 2008). ROI-based

approaches also require accurate segmentation and registration, both

of which are computationally intensive and time consuming. These

steps can potentially introduce errors in assessing ROI-based metabo-

lism measures, especially in the presence of structural atrophy. Other

methods include voxel-based approach where the registered FDG-

PET image is analyzed on a voxel-by-voxel basis using statistical

methods such as t test (Arbizu et al., 2013). ROI-based and voxel-

based approaches often require the use of individual MRI images to

superimpose structural ROIs on FDG-PET images or the use of a cus-

tom FDG-PET template to register FDG-PET images to a common

space. However, a structural MRI image may not be available for

every subject and custom FDG-PET template may be limited for use

in specific populations. These limitations provide hurdles for computa-

tional algorithms to be useful in the clinical setting.

In this work, we developed a 3D convolutional neural network

(CNN) and showed its predictive performance on images along the

entire DAT spectrum. 3D CNN allows us to make predictions using only

FDG-PET images without defining any a-priori ROIs. Recently, 3D CNNs

have been shown to be effective in various medical imaging applica-

tions. These applications include the detection of microbleeds from

MRI, detection of pulmonary nodules from computed tomography (CT),

segmentation of the liver from CT, segmentation of vertebral bodies

from MRI, segmentation of brain lesions from MRI, and segmentation of

subcortical structures from MRI (Dolz, Desrosiers, & Ayed, 2017; Dou,

Chen, Jin, et al., 2016; Dou, Chen, Yu, et al., 2016; Kamnitsas et al.,

2017; Korez, Likar, Pernus, & Vrtovec, 2016; Zhu, Liu, Fan, & Xie, 2018).

Most relevant to our work, 3D CNNs have shown success in the classifi-

cation of DAT using MRI (Hosseini-Asl, Gimel'farb, & El-Baz, 2016;

Payan & Montana, 2015). For FDG-PET, however, existing deep learn-

ing studies have employed 2D CNNs which do not take full advantage

of the spatial topographic patterns inherent in FDG-PET images (Ding

et al., 2018; Liu, Cheng, & Yan, 2018). Neural networks are often

described as black boxes. This has given rise to concern surrounding the

transparency and interpretability of neural networks. Besides presenting

a 3D CNN with high predictive performance and strong generalizability,

we explained how our 3D CNN model makes a prediction by visualizing

the saliency and class activation maps.

2 | MATERIALS

2.1 | Data

Data used in the preparation of this article were obtained from the

Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.

usc.edu). ADNI was launched in 2003 as a public–private partnership,

led by principal investigator Michael W. Weiner, MD. The primary goal

of ADNI has been to test whether serial MRI, PET, other biological

markers, and clinical and neuropsychological assessment can be

combined to measure the progression of MCI and early Alzheimer's

disease (AD). Full details of subject recruitment, scanning protocols,

and diagnostic criteria are available on www.adni-info.org.

2.2 | Database stratification

Using the stratification scheme proposed by Popuri et al. (2018), we

stratified the NC, MCI, and DAT groups into seven subgroups: sNC

(stable NC, remained NC throughout), uNC (unstable NC, converted

to MCI in the future), pNC (progressive NC, progressed to DAT in the

future), sMCI (stable MCI), pMCI (progressed to DAT in the future),

eDAT (converted to DAT during ADNI window), and sDAT (joined

ADNI with clinical diagnosis of DAT). These subgroups represent the

DAT− and DAT+ trajectories of future disease progression. Subjects

with clinical diagnosis of DAT at follow-ups regardless of their diagno-

sis at baseline are considered to be on the DAT+ trajectory. Thus, the

pNC, pMCI, eDAT, and sDAT subgroups are considered to be on the

DAT+ trajectory. These images are associated with a future diagnosis

of DAT. The sNC, uNC, and sMCI subgroups do not have a future des-

ignation of DAT (in the follow-ups available) and hence these sub-

groups are deemed to be on the DAT− trajectory. Demographic

details of all subgroups are presented in Table 1. We used the baseline

and longitudinal images of 359 sNC and 237 sDAT subjects for net-

work training. In total, we used 752 sNC images and 459 sDAT images

for network training and evaluation. We used all images of the sub-

jects in the uNC, sMCI, pNC, and pMCI subgroups as an independent

test set to assess the generalizability of our network.

2.3 | FDG-PET image preprocessing

We obtained preprocessed FDG-PET images from the LONI Image

Data Archive. Briefly, the ADNI FDG-PET preprocessing steps include

co-registering the raw FDG-PET frames, averaging the co-registered
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frames, mapping the averaged image into a standard 160 × 160 × 96

image grid with 1.5 × 1.5 × 1.5 mm3 voxel size, performing intensity

normalization such that the average intensity of foreground voxels is

exactly one, and filtering the normalized image with a scanner-specific

filter function to produce an image with isotropic resolution of 8 mm

FWHM. Full details of ADNI FDG-PET preprocessing steps are avail-

able at (http://adni.loni.usc.edu/methods/pet-analysis). We registered

the preprocessed images directly to the MNI template with 1.5 mm3

voxel size via 7-parameter rigid transformation using FSL-FLIRT soft-

ware (Jenkinson, Bannister, Brady, & Smith, 2002; https://fsl.fmrib.ox.

ac.uk/fsl/fslwiki/FLIRT). Note that this registration step does not

account for atrophic differences; it was used simply to correct for

pose differences, as our convolutional neural network is not rotation

invariant. We performed min–max scaling to rescale the image inten-

sity values to the range between 0 and 1.

3 | METHODS

Our proposed network is a 3D CNN with residual connections that takes

a 3D FDG-PET image as input and outputs a DAT probability score with

1 representing the highest probability of the image belonging to the DAT

class, and 0 representing the control (normal aging) class.

3.1 | Network architecture

Our 3D CNN has a total of eight convolutional layers. The number of

filters used in each convolutional layer is 2, 4, 16, 16, 64, 64, 72, and

96, respectively. Figure 1 illustrates our network architecture. The

first layer is a convolutional layer with a kernel size of 5 × 5 × 5 and a

stride of 2 which reduces the input spatial dimensions and subse-

quently lowers the memory usage. The second layer is a convolutional

layer with a kernel size of 3 × 3 × 3 and a stride of 1, followed by a

max pooling layer with a kernel size of 3 × 3 × 3 and a stride of 2. Next,

we used two residual learning blocks to learn hierarchical features.

Residual learning block was first introduced by He, Zhang, Ren, and Sun

(2016a) to address the degradation problem in deep learning where

adding more layers leads to higher training error and rapid performance

degradation. Each residual learning block consists of two convolutional

layers and a shortcut connection that bypasses the convolutional layers.

The shortcut connection creates identity mapping such that the output

of a residual learning block is the element-wise addition of its input and

the output of its last convolutional layer. In a series of residual learning

blocks, the shortcut connections allow information to propagate more

easily. An important and practical feature of residual learning blocks is

that they are computationally efficient. The shortcut connection can be

used without introducing additional parameters. For each residual

learning block, we added a 3 × 3 × 3 max pooling layer with a stride of

2 after its last convolutional layer, and we also added a 1 × 1 × 1 con-

volutional layer with a stride of 2 to the shortcut connection. Following

the residual learning blocks, we used two convolutional layers with a

kernel size of 3 × 3 × 3 and a stride of 1 to learn high-level features.

We added an instance normalization (IN) layer and leaky rectified

linear units (ReLU) after each of the aforementioned convolutional

layers not within a residual block (Maas, Hannun, & Ng, 2013; Ulyanov,

Vedaldi, & Lempitsky, 2017). Normalization layers help improve training

convergence speed. Instance normalization layers normalize each fea-

ture map of each channel of each training sample using the sample

TABLE 1 Demographic details of ADNI subjects

Dementia trajectory Group Number of participants Number of images Gender (F/M) Age MMSE

DAT− sNC 359 752 192/167 75.44 ± 5.95 29.08 ± 1.17

DAT− uNC 51 108 20/31 78.98 ± 4.90 29.06 ± 1.14

DAT− sMCI 427 871 173/254 74.94 ± 7.74 27.85 ± 1.96

DAT+ pNC 19 56 9/10 78.05 ± 4.52 28.91 ± 1.21

DAT+ pMCI 210 496 91/119 75.02 ± 7.16 26.80 ± 2.05

DAT+ eDAT 135 239 54/81 76.64 ± 6.67 22.27 ± 4.45

DAT+ sDAT 237 459 97/140 75.75 ± 7.51 22.01 ± 3.64

Abbreviations: ADNI, Alzheimer's Disease Neuroimaging Initiative; MCI, mild cognitive impairment; pMCI, progressive MCI; pNC, progressive NC; sDAT,

stable Dementia of the Alzheimer's type; sMCI, stable MCI; sNC, stable normal control; uNC, unstable normal control.

F IGURE 1 3D fully-
convolutional network with
shortcut connections. The dotted
shortcut connections match the
output dimensions of the max
pooling layers by performing
1 × 1 × 1 convolution with a
stride of 2
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mean and variance. The widely adopted batch normalization (BN) layer,

on the other hand, normalizes each feature map of each channel of a

mini-batch of data using the mini-batch mean and variance. Thus, batch

normalization requires a larger batch size in order to accurately esti-

mate the mini-batch mean and variance. Training with a larger batch

size is memory intensive and may lead to lower generalizability (Keskar,

Mudigere, Nocedal, Smelyanskiy, & Tang, 2016). Within the residual

blocks, we added instance normalization and leaky ReLU before each

convolutional layer as preactivation (He, Zhang, Ren, & Sun, 2016b).

The final classification layers consist of a global average pooling layer

and a 1 × 1 convolutional layer with softmax activation. Conventional

CNN uses a flattening layer to vectorize the feature maps of the last con-

volutional layer and adds fully connected layers on top of the long 1D vec-

tor. The combination of a flattening layer and fully connected layers results

in a large number of parameters. This kind of network is prone to over-

fitting.We replaced the flattening layer with a global average pooling layer

which has been shown to act as a regularizer (Lin, Chen, & Yan, 2013). The

global average pooling layer simply computes the average intensity of each

feature map. The final 1 × 1 convolutional layer acts as a fully connected

layer. Table 2 shows the details of our network architecture.

3.2 | Network training

To handle class imbalance, we optimized the weighted binary cross-

entropy loss given by:

Lcross−entropy=C0 1−yð Þlog p ~y =0jXð Þð Þ+C1ylog p ~y =1jXð Þð Þ

where C0 and C1 are, respectively, the sNC and sDAT class weights, and

p(~y = 0|X) and p(~y = 1|X) are, respectively, the NC and DAT class prob-

abilities given an input image X. The class weights are computed

using:

C0=
NsDAT

NsNC +NsDAT

C1=
NsNC

NsNC +NsDAT

where NsNC and NsDAT are the number of sNC and sDAT training

images. We incorporated L2 regularization in the classification layer to

help reduce overfitting. The L2 loss is formulated as:

Lregularization = λ wk k2

where λ = 0.01 is a hyperparameter representing the influence of

regularization, and w is the weight vector of the final convolutional

layer. The total loss is then given by:

L= Lcross−entropy + Lregularization

We used dropout at several layers in the network to further

reduce overfitting (Srivastava, Hinton, Krizhevsky, Sutskever, &

Salakhutdinov, 2014). The dropout layer randomly sets a fraction of

the input voxels to zero during training, forcing the network to learn

more robust features. We augmented our training data by applying

TABLE 2 Network architecture and
parametersLayers

Number of
filters

Kernel size/kernel
stride

Output
dimension

Dropout (0.2) 121 × 145 × 121

Convolution 2 5 × 5 × 5/2 × 2 × 2 61 × 73 × 61

Dropout (0.2) 61 × 73 × 61

Convolution 4 3 × 3 × 3/1 × 1 × 1 61 × 73 × 61

Max pooling 3 × 3 × 3/2 × 2 × 2 31 × 37 × 31

Residual block 1/convolution 16 3 × 3 × 3/1 × 1 × 1 31 × 37 × 31

Residual block 1/convolution 16 3 × 3 × 3/1 × 1 × 1 31 × 37 × 31

Residual block 1/max pooling 3 × 3 × 3/2 × 2 × 2 16 × 19 × 16

Residual block 2/convolution 64 3 × 3 × 3/1 × 1 × 1 16 × 19 × 16

Residual block 2/convolution 64 3 × 3 × 3/1 × 1 × 1 16 × 19 × 16

Residual block 2/max pooling 3 × 3 × 3/2 × 2 × 2 8 × 10 × 8

Dropout (0.2) 8 × 10 × 8

Convolution 72 3 × 3 × 3/1 × 1 × 1 8 × 10 × 8

Dropout (0.2) 8 × 10 × 8

Convolution 96 3 × 3 × 3/1 × 1 × 1 8 × 10 × 8

Global average pooling 96

Convolution 2 1 × 1/1 × 1 2

Total number of trainable

parameters

460,216
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left–right flip, rotation, and translation. Initially, we performed data

augmentation on-the-fly which allowed us to train the network using

a large number of unique images. However, 3D rotation of the input

volume increases both the training time and graphical processing unit

(GPU) memory usage. We opted to generate a fixed number of

rotated images by applying 5� rotation around each of the three axes.

We also generated spatially normalized images by co-registering the

ADNI preprocessed FDG-PET to the corresponding MRI, registering

the MRI to the MNI space via 12-parameter affine registration, and

applying the MRI-to-MNI space transformation to the co-registered

FDG-PET. These spatially normalized images were used to augment

the training data and visualize the saliency and class activation maps.

The left–right flip and translation of a maximum of five voxels in each

axis were done on-the-fly. The 3D convolutional filters were initial-

ized using the He-weight initialization method (He, Zhang, Ren, & Sun,

2015). Our network was trained end-to-end using mini-batches of size

8 and Adam optimizer with 0.001 learning rate and 0.9 momentum

for a maximum of 50 epochs (Kingma & Ba, 2014). We monitored the

validation loss and performance after every 2 epochs, stopping the

training process early whenever the lowest validation loss stayed con-

stant for 8 epochs.

3.3 | Network visualization

In an effort to make our model transparent and interpretable, we uti-

lized gradient-based visualization techniques. Guided backpropagation

computes the gradient of an output class probability with respect to

the input image, which reflects how small changes in each input image

pixel affect the output class probability (Springenberg, Dosovitskiy,

Brox, & Riedmiller, 2014). Given an input image, we performed a forward

pass to the DAT class probability node, and then back-propagated the

gradients to get a reconstructed image. During backpropagation, we set

negative gradients to zero because negative gradients correspond to the

deactivation of a higher convolutional layer, with the classification layer

being the topmost layer. This helps to reconstruct an image that activates

not just the neurons in the lower layers where general features are

learned, but also the neurons in the higher convolutional layers where

complex features are learned. This guided backpropagation approach has

been shown to produce sharper and more accurate images (Springenberg

et al., 2014). We smoothed the reconstructed image by applying a

gaussian filter with a sigma of 2, and rescaled the intensity to the range

between −1 and 1. A grand average saliency map was computed by

taking the average of the saliency maps produced by performing guided

backpropagation for every sNC and sDAT image.

One of the drawbacks of guided backpropagation is that the dis-

continuities in gradients through nonlinear leaky ReLU and max pooling

layer may cause undesirable artifacts. Gradient-weighted class activa-

tion mapping (GradCAM) uses the activation maps of a convolutional

layer, usually the last convolutional layer, to localize regions in the input

image that are of importance for predicting a target class (Selvaraju

et al., 2017). Grad-CAM avoids the gradient backpropagation problems

by propagating the gradients of the output class probability node only

until the last convolutional layer. These gradients capture the

importance of each activation map for a target class and can be used to

weigh the activation maps to generate a class-discriminative heatmap.

Given an input image, we forward propagated the image, and computed

the gradients of the DAT probability node with respect to the feature

maps of the convolutional layer before the global average pooling layer.

We then performed global average pooling of the gradients to obtain a

weight vector which represents the importance of each activation map.

The class activation map was generated by computing the weighted lin-

ear combination of the activation maps. We then visualized the positive

pixels in the class activation map by setting the negative pixels to zero,

as previous experiments have shown that negative pixels in the class

activation maps are more likely to be associated with nondesired clas-

ses (Selvaraju et al., 2017). A drawback of Grad-CAM is that it produces

down-sampled and coarse class activation maps. The class activation

map of size 8 × 10 × 8 was up-sampled to the input image resolution

using spline interpolation. The intensity of the up-sampled class acti-

vation map was rescaled to the range between 0 and 1. We also

computed Grad-CAM for the NC class. Again, this process was

repeated for every sNC and sDAT image to generate grand average

class activation maps.

For network visualization, we used the spatially normalized FDG-PET

images as inputs to ensure that there is spatial correspondence between

individual saliency and class activation maps. We co-registered the FDG-

PET images to their corresponding MRI images. We then transformed

the MRI images to MNI space via affine registration and applied the

same transformation to the co-registered FDG-PET images to obtain

spatially normalized FDG-PET images.

3.4 | Experiment

We trained on the baseline and longitudinal images to make full use

of all the available sNC and sDAT data. Importantly, we created the

training, validation, and test sets by splitting at the subject level. All

images of a training subject were used for training, and similarly all

images of a test subject were used for testing. Therefore, the training,

validation, and test sets contained mutually exclusive subjects. Splitting

at the image level could otherwise lead to biased and optimistic results,

especially if some images from the same subject were used for training

and other images from the same subject were used for testing.

We performed twice-repeated stratified fivefold cross-validation

(CV) to evaluate our network. In fivefold cross-validation, the data

were split into fivefolds. Each time, one fold (20% of data) was set

aside for testing, while one out of the remaining four folds was ran-

domly selected as the validation set and the rest were used as training

sets. We chose to perform fivefold cross-validation instead of the typ-

ical 10-fold cross-validation because this allowed us to test on a larger

number of images. We repeated the fivefold cross-validation twice to

obtain a better estimate of the classification performance. Altogether,

we performed 10 iterations of training, validating, and testing on 60%,

20%, and 20% of sNC and sDAT subjects respectively, resulting in

10 networks. Since each network was only trained on a subset of the

sNC and sDAT images, we created an ensemble by averaging the pre-

dictions from the 10 networks to make full use of the sNC and sDAT

YEE ET AL. 9



images. We tested the generalizability of our ensemble by testing on

the unseen uNC, pNC, pMCI, and eDAT images.

4 | RESULTS

4.1 | Cross-validation performance

In Table 3, we present the classification performance on the sNC and

sDAT images averaged across the 10 test folds. The accuracy, sensi-

tivity, and specificity were computed using a threshold of 0.5, with

probability greater than 0.5 assigned to the DAT class. The results

obtained show that our proposed method surpassed other competing

published methods in AUC and accuracy. Figure 2 shows that the

predicted DAT probability scores for the sNC and sDAT test images

are clustered around mean values of 0.064 and 0.928, respectively.

4.2 | Generalizability to other images along the DAT
spectrum

In Table 4, we provide the classification accuracy on the uNC, sMCI,

pNC, pMCI, and eDAT independent test images computed using the

0.5 threshold. The classification accuracy on the eDAT images is the

highest, followed by the uNC, sMCI, pMCI, and pNC in descending

order. Figure 3 shows the distribution of the DAT probability scores

for the uNC, sMCI, pNC, pMCI, and eDAT images as predicted by the

final ensemble. The DAT− subgroups represented by the uNC and

sMCI have low predicted DAT probability scores with mean values of

0.226 and 0.278, respectively. The DAT+ subgroups, however, show

inconsistent distribution patterns. The eDAT subgroup has a single

cluster of high-predicted DAT probability scores with a mean value of

0.873, while the pMCI subgroup has two clusters of predicted DAT

TABLE 3 Comparison of published sNC versus sDAT classification performance

Study
sNC
subjects sDAT subjects AUC Accuracy (%) Sensitivity (%) Specificity (%) Evaluation scheme

Herholz et al. (2002) 28 28 0.970 93.0 93.0 93.0 Independent test

Ishii et al. (2006) 15 15 0.967 93.0 93.0 93.0 Independent test

Haense, Herholz, Jagust,

and Heiss (2009)

102 89 0.896 – 83.0 78.0 Independent test

Illan et al. (2011) – – – 88.2 87.7 88.6 Independent test

Arbizu et al. (2013) 20 21 0.948 – – – Independent test

Gray et al. (2011) 69 71 0.900 81.6 82.7 80.4 Repeated hold-out

Toussaint et al. (2012) 80 80 – 91 84 100 Leave-one-out CV

Popuri et al. (2018) 360 238 0.954 89.8 87.0 91.7 Subagging

Zhang et al. (2011) 52 51 0.938 86.5 86.3 86.6 10-fold CV

Liu et al. (2018) 100 93 0.953 91.2 91.4 91.0 10-fold CV

Our method 359 237 0.976 93.5 92.3 94.2 Repeated fivefold CV

Abbreviations: sDAT, stable Dementia of the Alzheimer's type; sNC, stable normal control.

F IGURE 2 DAT probability score distribution among the sNC and
sDAT test images. The violin plot shows the density (relative
proportion of images), while the white dot gives the mean probability.
A threshold of 0.5 leads to classification accuracy of 93.5%, sensitivity
of 92.3%, specificity of 94.2%, and AUC of 0.976. sDAT, stable
Dementia of the Alzheimer's type; sNC, stable normal control

TABLE 4 Classification accuracy within each DAT− and DAT+
subgroup

Subgroups
Actual
DAT−

Actual
DAT+

Predicted
DAT−

Predicted
DAT+ Accuracy (%)

uNC 108 – 90 18 83.3

sMCI 871 – 653 218 75.0

pNC – 56 44 12 21.4

pMCI – 496 180 316 63.7

eDAT – 238 25 213 89.5

Abbreviations: DAT, Dementia of the Alzheimer's type; pMCI, progressive

mild cognitive impairment; pNC, progressive normal control; sMCI, stable

mild cognitive impairment; uNC, unstable normal control.
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probability scores with an overall mean value of 0.623. Of the three

DAT+ subgroups, the pNC subgroup has the lowest predicted DAT

probability scores with a mean value of 0.261.

The pMCI and pNC are heterogeneous subgroups with varying

disease severity and time to conversion. The number of years elapsed

from an image scan date to a follow-up date at which the pMCI or

pNC subject's clinical diagnosis was changed to DAT is termed the

time to conversion. In Figures 4 and 5, the predicted DAT probability

scores when sorted by the time to conversion show a trend toward

F IGURE 3 DAT probability score distribution among all the
independent test images from the uNC, sMCI, pNC, pMCI, and eDAT
subgroups. The violin plot shows the density (relative proportion of
images), while the white dot gives the mean probability score. Most of
the eDAT images are clustered around the high probability scores.
The pMCI images exhibit bimodal clustering with a dominant cluster
around higher probability scores and another cluster around lower
probability scores. The pNC, sMCI, and uNC images are clustered
mainly around lower probability scores. DAT, Dementia of the
Alzheimer's type; pMCI, progressive mild cognitive impairment; pNC,
progressive normal control; sMCI, stable mild cognitive impairment;
uNC, unstable normal control

F IGURE 4 DAT probability scores across pNC images arranged
by the time to conversion. The violin plot shows the density (relative
proportion of images), while the white dot gives the mean probability.
Note that for images taken closer to the time of conversion, there is a
trend toward higher probability scores. DAT, Dementia of the
Alzheimer's type; pNC, progressive normal control

F IGURE 5 DAT probability scores across pMCI images sorted by
the time to conversion. The violin plot shows the density (relative
proportion of images), while the white dot gives the mean probability.
Note that for images taken closer to the time of conversion, there is a
trend toward higher probability scores. Prior to 5 years before
conversion, there is more clustering around lower probability scores,
and within 5 years before conversion, there is more clustering around
higher probability scores, with a transition zone between years 3 and
5. DAT, Dementia of the Alzheimer's type; pMCI, progressive mild
cognitive impairment

TABLE 5 Classification accuracy as a function of years to
conversion

Subgroup Year to conversion Accuracy (%)

pNC 0–2 50.0

2–4 38.9

4–6 16.7

6–8 0.0

8–10 0.0

pMCI 0–1 80.2

1–2 73.0

2–3 68.5

3–4 55.8

4–5 45.5

5–6 12.5

6–7 10.0

7–8 9.1

8–9 11.1

9–10 0.0
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higher values as the time to conversion decreases. As expected, the

DAT probability scores increase as the subjects approach conversion

to a clinical diagnosis of DAT. Note that larger time to conversion

ranges were used for the pNC images because the number of avail-

able pNC images is much smaller (see Table 1). The predicted DAT

probability scores for the pMCI images with conversion time of

3 years are relatively high compared to those with conversion time

exceeding 4 years. For the pNC images, however, even images with

conversion time of 2 years have very low DAT probability scores.

In Table 5, we list the classification accuracy as a function of years to

conversion. We compared the performance of our method in the task

of predicting MCI to DAT conversion in Table 6. Considering the large

sample size in our experiment, the results show a clear advantage in

accuracy and specificity for predicting MCI to DAT conversion, but

offer a slightly lower sensitivity. Overall, our network achieved 0.793

AUC, 72.6% accuracy, 68.5% sensitivity, and 75.9% specificity on a

completely independent and unseen test set consisting of the uNC,

sMCI, pNC, pMCI, and eDAT images.

4.3 | Saliency and class activation maps

The grand average DAT saliency map, which shows how small

changes in the intensities of the input image affect the predicted DAT

probability score, is presented in Figure 6. Regions with negative influ-

ence on the DAT class such that decreased intensities lead to higher

predicted DAT probability score include the posterior cingulate

cortex, middle cingulate cortex, angular gyrus, and hippocampus.

Regions with positive influence on the DAT class such that

increased intensities lead to higher predicted DAT probability

score include the thalamus, putamen, lingual gyrus, fusiform, ven-

tral medial prefrontal cortex, pons, and cerebellum. The precuneus

shows negative influence on the DAT class except for its dorsal

anterior subdivision which shows positive influence. The grand

average DAT class activation map in Figure 7 highlights the impor-

tance of the posterior cingulate cortex for predicting DAT, while

the grand average NC class activation map in Figure 8 highlights

the importance of the cerebellum for predicting NC.

F IGURE 6 Grand average DAT saliency map. Regions with negative influence on the DAT class such that decreased intensities (blue) lead to
higher predicted DAT probability score include the posterior cingulate cortex, middle cingulate cortex, angular gyrus, and hippocampus. Regions
with positive influence on the DAT class such that increased intensities (red) lead to higher predicted DAT probability score include the thalamus,
putamen, lingual gyrus, fusiform, ventral medial prefrontal cortex, pons and cerebellum. DAT, Dementia of the Alzheimer's type

TABLE 6 Comparison of published sMCI versus pMCI classification performance evaluated on independent test set with 0–3 years time to
conversion

Study sMCI images pMCI images AUC Accuracy (%) Sensitivity (%) Specificity (%)

Young et al. (2013) 96 47 0.767 69.9 78.7 65.6

Lange et al. (2016) 181 60 0.746 68.0 70.0 68.0

Popuri et al. (2018) 881 362 0.796 – – –

Our method 871 362 0.811 74.7 74.0 75.0

Abbreviations: pMCI, progressive mild cognitive impairment; sMCI, stable mild cognitive impairment.
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5 | DISCUSSION

In this work, we presented a 3D CNN approach for classifying DAT

using only FDG-PET images. No associated MRI images are needed,

and hence this method is more closely tuned to the clinical setting

where one image (FDGPET) has been acquired and is being assessed

and interpreted toward a clinical diagnosis of DAT. Throughout this

work, we avoided common pitfalls that can lead to overly optimistic

results. We performed repeated fivefold cross-validation to ensure

that our performance estimation is not sensitive to the choice of train-

ing samples. This cross-validation strategy also allowed us to evaluate

our model on a larger test set (20%). Importantly, we split the images

at the subject level, ensuring that the training and test sets contained

mutually exclusive subjects. Our model performed well on images

from the extreme ends of the DAT spectrum, achieving 93.5% cross-

validated accuracy when tested on large number of sNC and sDAT

F IGURE 7 Grand average DAT class activation map highlighting the posterior cingulate cortex as the region most important for predicting the
DAT class. DAT, Dementia of the Alzheimer's type

F IGURE 8 Grand average NC class activation map highlighting the cerebellum as the region most important for predicting the NC class. NC,
normal control
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images. Images observed in a real-world clinical setting, however, can

come from anywhere along the entire DAT spectrum. Of particular

importance is the ability to accurately predict future conversion to

DAT in those at the MCI stage, or even in those who are NC but are

on the DAT+ trajectory. When tested on the uNC, sMCI, pNC, pMCI,

and eDAT images, our model accuracy was 72.5%. As shown in

Figure 3, the reduced performance is mainly due to misclassified pNC

and pMCI images. In general, our model failed to predict conversion in

pNC images across all conversion time ranges. Our model is, however,

able to classify the pMCI images that are within 3 years of conversion

to DAT with 74.0% accuracy. Further validation on an entirely inde-

pendent clinical cohort is needed to verify that our model can handle

scans obtained with different scanner parameters.

Visual interpretation is an important element of automated image

analysis methods because it provides additional context around which

the scoring of the image patterns is constructed. To better interpret

the trained network prediction models, we analyzed the saliency and

class activation maps. The saliency map in Figure 6 suggests that

hypometabolism within the posterior cingulate cortex, precuneus,

angular gyrus, and hippocampus is associated with DAT. This is con-

sistent with the classic pattern of impaired metabolism observed in

DAT (Del Sole et al., 2008; Jagust, Reed, Mungas, Ellis, & Decarli, 2007;

Mosconi et al., 2005; Mosconi et al., 2008; Sanabria-Diaz, Martínez-

Montes, & Melie-Garcia, 2013). The patterns of hypermetabolism

observed in Figure 6 echo those reported in a recent study (Katako

et al., 2018). Although hypermetabolism is seldom reported in associa-

tion with DAT, the regions showing hypermetabolism have been found

to exhibit structural atrophy in DAT. Decreased volumes of the puta-

men and thalamus in DAT have shown significant correlation with cog-

nitive test scores (De Jong et al., 2008). Volume loss in the fusiform is

reported to occur at a higher rate of change in DAT and MCI (Holland

et al., 2009). Moreover, thickness change in the fusiform is found to be

predictive of cognitive decline on memory-specific tasks (Murphy et al.,

2010). A possible explanation for the observed hypermetabolism is that

it may be a compensatory mechanism being recruited to preserve

function in the face of network degradation due to AD. In their inves-

tigation of the relationship between glucose metabolism and memory

function, Habeck et al. (2012) observed frontal hypermetabolism

in DAT that is associated with better memory performance.

Hypermetabolism might reflect an increased recruitment of neurons

that serves to compensate for other affected areas. Even though aver-

aging the saliency maps across all sNC and sDAT subjects should help

reduce noise, it should be cautioned that the saliency map may still

contain artifacts caused by discontinuities in the gradients.

Compared to the saliency map, the class activation maps in

Figures 7 and 8 lack the spatial resolution required to discern voxel-

wise activity due to smoothing and upsampling. However, the class

activation maps do highlight the region most important for predicting

each target class. The DAT class activation map, as expected, high-

lights the posterior cingulate cortex, while the NC class activation

map surprisingly features the cerebellum. In typical FDG-PET analysis,

metabolism is quantified only in relative terms and cerebellar metabo-

lism is often used for intensity normalization. There have been

inconsistent findings of DAT-related metabolism in the cerebellum.

An earlier study has found reduced metabolism in the cerebellum,

while a more recent study has found increased metabolism in the

cerebellum (Ishii et al., 1997; Mattis et al., 2016). Interestingly, cere-

bellar metabolism is reported to correlate with deficits in memory per-

formance and social skills (Newberg et al., 2003). Overall, the spatial

patterns captured by our 3D CNN are consistent with the literature.

A key motivation of our work was to develop a method for single

modality imaging. However, the use of multimodality imaging and

even nonimaging data may provide complementary information that

can help improve predictive performance. Our method can be easily

extended to train on multimodal images, which could help further

improve prediction farther away from time to conversion.

6 | CONCLUSIONS

We demonstrated the viability of using 3D CNN applied on FDG-PET

images for the classification of DAT and demonstrated the validity of

the spatial patterns captured by our model. We also showed detailed

performance metrics, focusing on a realistic performance evaluation

that attempts to mimic a real-world clinical situation. While our model

achieved state-of-the-art performance on classification of images

along the entire DAT spectrum, it showed limited prognostic value in

predicting future conversion to DAT using only an FDG-PET image.

Improvements can come from incorporating other imaging modalities

and clinical nonimaging data into this flexible framework.
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